[1] Razumilava N, Gores GJ. Cholangiocarcinoma[J]. Lancet, 2014, 383(9935): 2168-2179. [2] Hsu BY, Driscoll J; Human Cholangiocarcinogenesis Project, et al. Human Hepatocytes Can Give Rise to Intrahepatic Cholangiocarcinomas[J]. Gastroenterology, 2024,167(5): 1029-1032. [3] Hsu BY, Driscoll J; Human Cholangiocarcinogenesis Project, et al. Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes[J]. Cancer Cell, 2019, 35(6): 932-947. [4] Ko S, Russell JO, Molina LM, Monga SP. Liver Progenitors and Adult Cell Plasticity in Hepatic Injury and Repair: Knowns and Unknowns[J]. Annu Rev Pathol, 2020, 15: 23-50. [5] Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes[J]. J Clin Invest, 2012, 122(11): 3914-3918. [6] Guest RV, Boulter L, Kendall TJ, et al. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma[J]. Cancer Res, 2014, 74(4): 1005-1010. [7] Ikenoue T, Terakado Y, Nakagawa H, et al. Corrigendum: A novel mouse model of intrahepatic cholangiocarcinoma induced by liver-specific Kras activation and Pten deletion[J]. Sci Rep, 2017, 7: 39567. [8] Lin YK, Fang Z, Jiang TY, et al. Combination of Kras activation and PTEN deletion contributes to murine hepatopancreatic ductal malignancy[J]. Cancer Lett, 2018, 421: 161-169. [9] Morris SM, Baek JY, Koszarek A, et al. Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss[J]. Hepatology, 2012, 55(1): 121-131. [10] Cai X, Li H, Kaplan DE. Murine hepatoblast-derived liver tumors resembling human combined hepatocellular-cholangiocarcinoma with stem cell features[J]. Cell Biosci, 2020, 10: 38. [11] Dai Z, Zhu W, Hou Y, et al. METTL5-mediated 18S rRNA m(6)A modification promotes oncogenic mRNA translation and intrahepatic cholangiocarcinoma progression[J]. Mol Ther, 2023, 31(11): 3225-3242. [12] Razumilava N, Gores GJ. Notch-driven carcinogenesis: the merging of hepatocellular cancer and cholangiocarcinoma into a common molecular liver cancer subtype[J]. J Hepatol, 2013, 58(6): 1244-1245. [13] Dill MT, Tornillo L, Fritzius T, et al. Constitutive Notch2 signaling induces hepatic tumors in mice[J]. Hepatology, 2013,57(4): 1607-1619. [14] Kaylan KB, Ermilova V, Yada RC, et al. Combinatorial microenvironmental regulation of liver progenitor differentiation by Notch ligands, TGFbeta, and extracellular matrix[J]. Sci Rep, 2016,6: 23490. [15] Hill MA, Alexander WB, Guo B, et al. Kras and Tp53 Mutations Cause Cholangiocyte- and Hepatocyte-Derived Cholangiocarcinoma[J]. Cancer Res, 2018,78(16):4445-4451. [16] Wang T, Xu C, Zhang Z, et al. Cellular heterogeneity and transcriptomic profiles during intrahepatic cholangiocarcinoma initiation and progression[J]. Hepatology, 2022,76(5): 1302-1317. [17] Wang N, Kong R, Han W, et al. Wnt/beta-catenin signalling controls bile duct regeneration by regulating differentiation of ductular reaction cells[J]. J Cell Mol Med, 2020,24(23): 14050-14058. [18] Ludovichetti R, Chow CT, Kashyap S, et al. Lujambio, beta-Catenin Is a Novel Target in YES-associated Protein-driven Cholangiocarcinoma[J]. Gastroenterology, 2022,163(2): 374-376. |