肝脏 ›› 2025, Vol. 30 ›› Issue (10): 1430-1434.
丁俊瑶, 柳涛, 杨丽丽, 宋海燕, 郑培永
收稿日期:2024-11-21
出版日期:2025-10-31
发布日期:2025-12-16
通讯作者:
郑培永,Email: zpychina@sina.com;宋海燕,Email: songhy@126.com
基金资助:
Received:2024-11-21
Online:2025-10-31
Published:2025-12-16
摘要: 非酒精性脂肪性肝病(NAFLD)已成为影响人类健康的主要肝病,但其病因和发病机制迄今尚未被完全阐明,也仍然缺乏有效治疗药物。能够模拟NAFLD临床表型和病理过程的动物模型是探讨其复杂的病理机制和发展新型诊疗方法的必要研究工具。啮齿类动物的肝脏结构和功能与人类相似,并且容易管理和繁殖,被广泛应用于NAFLD造模,其模型建立主要通过饮食调整、化学物质刺激或基因编辑等方式诱导。其中,饮食诱导小鼠NAFLD模型的生物学机制、发展过程和表型与人类NAFLD相近,近年来发展迅速,应用最为广泛。但饮食成分组成、诱导时间、小鼠年龄和性别等多种因素均会对模型造成影响。目前尚缺乏统一规范的NAFLD模型制备流程。本文汇总近年来研究报道的饮食诱导的小鼠NAFLD模型,分析和讨论不同模型的特性及优缺点,以期为选择恰当的小鼠模型进行NAFLD研究提供指导和依据。
丁俊瑶, 柳涛, 杨丽丽, 宋海燕, 郑培永. 饮食诱导的非酒精性脂肪性肝病小鼠模型研究进展[J]. 肝脏, 2025, 30(10): 1430-1434.
| [1] Lazarus J V, Mark H E, Anstee Q M, et al. Advancing the global public health agenda for NAFLD: a consensus statement[J]. Nat Rev Gastroenterol Hepatol, 2022,19(1):60-78. [2] 中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 中华肝脏病杂志, 2024,32(5):418-434. [3] Flessa C M, Nasiri-Ansari N, Kyrou I, et al. Genetic and diet-induced animal models for non-alcoholic fatty liver disease (NAFLD) research[J]. Int J Mol Sci, 2022,23(24):15791. [4] Denk H, Abuja P M, Zatloukal K. Animal models of NAFLD from the pathologist's point of view[J]. Biochim Biophys Acta Mol Basis Dis, 2019,1865(5):929-942. [5] Recena Aydos L, Aparecida do Amaral L, Serafim de Souza R, et al. Nonalcoholic fatty liver disease induced by high-fat diet in c57bl/6 models[J]. Nutrients, 2019,11(12):3067. [6] Hu S, Wang L, Yang D, et al. Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice[J]. Cell Metab, 2018,28(3):415-431. [7] Rahmadi M, Nurhan A D, Pratiwi E D, et al. The effect of various high-fat diet on liver histology in the development of NAFLD models in mice[J]. J Basic Clin Physiol Pharmacol, 2021,32(4):547-553. [8] Saxena R, Nassiri M, Yin X M, et al. Insights from a high-fat diet fed mouse model with a humanized liver[J]. Plos One, 2022,17(5):e268260. [9] Chen K, Ma J, Jia X, et al. Advancing the understanding of NAFLD to hepatocellular carcinoma development: from experimental models to humans[J]. Biochim Biophys Acta Rev Cancer, 2019,1871(1):117-125. [10] Zhi S, Congcong Z, Zhiling G, et al. Quantitative proteomics of HFD-induced fatty liver uncovers novel transcription factors of lipid metabolism[J]. Int J Biol Sci, 2022,18(8):3298-3312. [11] Li Y, Liu Y, Chen Z, et al. Protopanaxadiol ameliorates NAFLD by regulating hepatocyte lipid metabolism through AMPK/SIRT1 signaling pathway[J]. Biomed Pharmacother, 2023,160:114319. [12] Velázquez K T, Enos R T, Bader J E, et al. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice[J]. World J Hepatol, 2019,11(8):619-637. [13] Febbraio M A, Reibe S, Shalapour S, et al. Preclinical models for studying NASH-driven HCC: how useful are they?[J]. Cell Metab, 2019,29(1):18-26. [14] Lodge M, Dykes R, Kennedy A. Regulation of fructose metabolism in nonalcoholic fatty liver disease[J]. Biomolecules, 2024,14(7):845 [15] Herman M A, Birnbaum M J. Molecular aspects of fructose metabolism and metabolic disease[J]. Cell Metab, 2021,33(12):2329-2354. [16] Zhao S, Jang C, Liu J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate[J]. Nature, 2020,579(7800):586-591. [17] Silva-Veiga F M, Miranda C S, Martins F F, et al. Gut-liver axis modulation in fructose-fed mice: a role for PPAR-α and linagliptin[J]. J Endocrinol, 2020,247(1):11-24. [18] Oliveira-Cordeiro B, Fernandes-DA-Silva A, Silva-Veiga F M, et al. Long-term hepatic damage in high-fructose-fed c57bl/6 mice: hepatic fibrogenesis, endoplasmic reticulum stress markers, and fibrosis[J]. An Acad Bras Cienc, 2023,95(suppl 2):e20220784. [19] Im Y R, Hunter H, de Gracia Hahn D, et al. A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD[J]. Hepatology, 2021,74(4):1884-1901. [20] Chiang Morales M D, Chang C Y, Le V L, et al. High-fructose/high-fat diet downregulates the hepatic mitochondrial oxidative phosphorylation pathway in mice compared with high-fat diet alone[J]. Cells, 2022,11(21):3425 [21] Mock K, Lateef S, Benedito V A, et al. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation[J]. J Nutr Biochem, 2017,39:32-39. [22] Luo Y, Woodie L N, Graff E C, et al. Role of liquid fructose/sucrose in regulating the hepatic transcriptome in a high-fat western diet model of NAFLD[J]. J Nutr Biochem, 2023,112:109174. [23] Dong Y, Li W, Yin J. The intestinal-hepatic axis: a comprehensive review on fructose metabolism and its association with mortality and chronic metabolic diseases[J]. Crit Rev Food Sci Nutr, 2023:1-14. [24] Venkatesan N, Doskey L C, Malhi H. The role of endoplasmic reticulum in lipotoxicity during metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis[J]. Am J Pathol, 2023,193(12):1887-1899. [25] Savard C, Tartaglione E V, Kuver R, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis[J]. Hepatology, 2013,57(1):81-92. [26] Gao X, Lin X, Xin Y, et al. Dietary cholesterol drives the development of nonalcoholic steatohepatitis by altering gut microbiota mediated bile acid metabolism in high-fat diet fed mice[J]. J Nutr Biochem, 2023,117:109347. [27] Zhang X, Coker O O, Chu E S, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J]. Gut, 2021,70(4):761-774. [28] Zhang H, Léveillé M, Courty E, et al. Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease[J]. Am J Physiol Endocrinol Metab, 2020,319(5):E863-E876. [29] Perakakis N, Joshi A, Peradze N, et al. The selective peroxisome proliferator-activated receptor gamma modulator chs-131 improves liver histopathology and metabolism in a mouse model of obesity and nonalcoholic steatohepatitis[J]. Hepatol Commun, 2020,4(9):1302-1315. [30] Kristiansen M N, Veidal S S, Rigbolt K T, et al. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy[J]. World J Hepatol, 2016,8(16):673-684. [31] Clapper J R, Hendricks M D, Gu G, et al. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment[J]. Am J Physiol Gastrointest Liver Physiol, 2013,305(7):G483-G495. [32] Gallage S, Avila J E B, Ramadori P, et al. A researcher's guide to preclinical mouse NASH models[J]. Nat Metab, 2022,4(12):1632-1649. [33] Boland M L, Oró D, Tølbøl K S, et al. Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: impact of dietary fat source[J]. World J Gastroenterol, 2019,25(33):4904-4920. [34] Madsen A N, Oró D, Madsen M R, et al. Development of hepatocellular carcinoma in the extended GAN diet-induced obese mouse model of nash with advanced fibrosis[J]. J Hepatol, 2022,77(S1):S389-S664. [35] Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications[J]. Biochem Pharmacol, 2022,200:115033. [36] Vallianou N G, Kounatidis D, Psallida S, et al. The interplay between dietary choline and cardiometabolic disorders: a review of current evidence[J]. Curr Nutr Rep, 2024,13(2):152-165. [37] Yu Y, Liu Y, An W, et al. STING-mediated inflammation in kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J Clin Invest, 2019,129(2):546-555. [38] Liu M T, Zhang Y, Xiang C G, et al. Methionine-choline deficient diet deteriorates DSS-induced murine colitis through disturbance of gut microbes and infiltration of macrophages[J]. Acta Pharmacol Sin, 2024,45(9):1912-1925. [39] Alshawsh M A, Alsalahi A, Alshehade S A, et al. A comparison of the gene expression profiles of non-alcoholic fatty liver disease between animal models of a high-fat diet and methionine-choline-deficient diet[J]. Molecules, 2022,27(3):858. [40] Itagaki H, Shimizu K, Morikawa S, et al. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in c57BL/6 mice[J]. Int J Clin Exp Pathol, 2013,6(12):2683-2696. [41] Rinella M E, Green R M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance[J]. J Hepatol, 40 (1):47-51. [42] Fuchs C D, Radun R, Dixon E D, et al. Hepatocyte-specific deletion of adipose triglyceride lipase (adipose triglyceride lipase/patatin-like phospholipase domain containing 2) ameliorates dietary induced steatohepatitis in mice[J]. Hepatology, 2022,75(1):125-139. [43] Rinella M E, Elias M S, Smolak R R, et al. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet[J]. J Lipid Res, 2008,49(5):1068-1076. [44] Ikawa-Yoshida A, Matsuo S, Kato A, et al. Hepatocellular carcinoma in a mouse model fed a choline-deficient, l-amino acid-defined, high-fat diet[J]. Int J Exp Pathol, 2017,98(4):221-233. [45] Zhang J, Zang X, Lv J, et al. Changes in lipidomics, metabolomics, and the gut microbiota in CDAA-induced NAFLD mice after polyene phosphatidylcholine treatment[J]. Int J Mol Sci, 2023,24(2):1502 [46] Farrell G, Schattenberg J M, Leclercq I, et al. Mouse models of nonalcoholic steatohepatitis: toward optimization of their relevance to human nonalcoholic steatohepatitis[J]. Hepatology, 2019,69(5):2241-2257. [47] Kodama Y, Kisseleva T, Iwaisako K, et al. C-JUN n-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice[J]. Gastroenterology, 2009,137(4):1467-1477. [48] Matsumoto M, Hada N, Sakamaki Y, et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis[J]. Int J Exp Pathol, 2013,94(2):93-103. [49] Fengler V H, Macheiner T, Kessler S M, et al. Susceptibility of different mouse wild type strains to develop diet-induced NAFLD/AFLD-associated liver disease[J]. Plos One, 2016,11(5):e155163. [50] Kawashita E, Ishihara K, Nomoto M, et al. A comparative analysis of hepatic pathological phenotypes in C57BL/6J and C57BL/6N mouse strains in non-alcoholic steatohepatitis models[J]. Sci Rep, 2019,9(1):204. [51] Miller M J, Harding-Theobald E, DiBattista J V, et al. Progression to cirrhosis is similar among all ages in nonalcoholic fatty liver disease, but liver-related events increase with age[J]. Hepatol Commun, 2023,7(6):e0148 [52] Nestor J J, Parkes D, Feigh M, et al. Effects of alt-801, a GLP-1 and glucagon receptor dual agonist, in a translational mouse model of non-alcoholic steatohepatitis[J]. Sci Rep, 2022,12(1):6666. [53] Li X, Lu Y, Liang X, et al. A new NASH model in aged mice with rapid progression of steatohepatitis and fibrosis[J]. PLoS One, 2023,18(5):e286257. [54] Fontana L, Zhao E, Amir M, et al. Aging promotes the development of diet-induced murine steatohepatitis but not steatosis[J]. Hepatology, 2013,57(3):995-1004. [55] Balakrishnan M, Patel P, Dunn-Valadez S, et al. Women have a lower risk of nonalcoholic fatty liver disease but a higher risk of progression vs men: a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2021,19(1):61-71. [56] Smati S, Polizzi A, Fougerat A, et al. Integrative study of diet-induced mouse models of NAFLD identifies pparα as a sexually dimorphic drug target[J]. Gut, 2022,71(4):807-821. [57] Tian Y, Hong X, Xie Y, et al. 17β-estradiol (E2) upregulates the ERα/SIRT1/PGC-1α signaling pathway and protects mitochondrial function to prevent bilateral oophorectomy (OVX)-induced nonalcoholic fatty liver disease (NAFLD)[J]. Antioxidants (Basel), 2023,12(12):2100. |
| [1] | 杨森, 吴春芳, 章杨杨, 成思, 石磊, 王丽丽. 脂肪酶、脂蛋白(a)及脂蛋白相关磷脂酶A2对非酒精性脂肪性肝病早期心血管损伤诊断的价值[J]. 肝脏, 2025, 30(9): 1200-1203. |
| [2] | 杨炜峰, 刘树君, 刘俊浩, 苗振川, 尹明. 临床前大小鼠MASH模型研究进展及在药物测试中的应用[J]. 肝脏, 2025, 30(6): 764-768. |
| [3] | 巩红, 张岩, 张春艳, 邓捷, 吴皓宇, 韩拓. 三酰甘油葡萄糖-体质指数对瘦型非酒精性脂肪性肝病的预测价值[J]. 肝脏, 2025, 30(6): 808-812. |
| [4] | 俞媛, 张丹丹, 包薇萍, 褚晓秋, 窦英磊, 张美云. NLR对NAFLD患者预后预测价值的Meta分析[J]. 肝脏, 2025, 30(6): 813-819. |
| [5] | 陈雷, 龚倩, 刘金广, 沈怀云. 儿童非酒精性脂肪性肝病的临床特征及肝纤维化危险因素分析[J]. 肝脏, 2025, 30(6): 820-824. |
| [6] | 孙志伟, 朱炜杰, 张海英, 梅祯茹, 李晓云. 益生菌辅助复方甘草酸苷治疗肥胖儿童非酒精性脂肪性肝病对肝功能、肠道菌群的影响[J]. 肝脏, 2025, 30(6): 825-828. |
| [7] | 陈小燕, 孙沛祺, 袁乙富, 曹勤, 蒋元烨. 7种矿物质营养素血清水平与代谢综合征患者的非酒精性脂肪性肝病风险关联性[J]. 肝脏, 2025, 30(5): 659-665. |
| [8] | 陈艳君, 李佳迅, 钟伏弟, 江克清. FABP4缺失改善小鼠非酒精性脂肪性肝炎的作用机制[J]. 肝脏, 2025, 30(5): 666-674. |
| [9] | 杨宪碧, 黄卫东, 黄英. SWE及UAP参数评估肥胖青少年非酒精性脂肪性肝病肝脂肪变的临床价值[J]. 肝脏, 2025, 30(4): 542-547. |
| [10] | 梁栋, 沈德新. 儿童不明原因肝功能异常病因回顾性分析[J]. 肝脏, 2025, 30(4): 548-551. |
| [11] | 徐忆青, 陈园, 崔文琪, 张学敏. 琥珀酸缓解小鼠高脂饮食所致肥胖及脂肪肝的作用[J]. 肝脏, 2025, 30(2): 236-239. |
| [12] | 丁剑波, 金爱华, 李秀惠, 李丽. 尿酸在非酒精性脂肪性肝病发生发展中的作用及机制[J]. 肝脏, 2025, 30(2): 272-275. |
| [13] | 葛海龙, 巢晨, 侍兴松, 白崔巍, 王玉, 尹琪. 肝脏超声模型在磁共振质子密度脂肪分数评估中的应用[J]. 肝脏, 2025, 30(10): 1393-1397. |
| [14] | 丁剑波, 李丽, 李秀惠. 青少年学生血尿酸水平与非酒精性脂肪性肝病发生、发展的关系[J]. 肝脏, 2025, 30(1): 87-90. |
| [15] | 赵康涛, 黄文琪, 林颖珺, 孙丽, 赵坐都, 黄宗锈, 吴珍红, 郑丽红, 林云, 韩尧跃, 林秀芬. 壳寡糖对非酒精性脂肪性肝病的保护作用[J]. 肝脏, 2025, 30(1): 91-94. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||