[1] Roediger R, Fleckenstein J. Intrahepatic cholestasis of pregnancy: natural history and current management. Semin Liver Dis, 2021, 41(1): 103-108. [2] Walker KF, Chappell LC, Hague WM, et al. Pharmacological interventions for treating intrahepatic cholestasis of pregnancy. Cochrane Database Syst Rev, 2020, 7: CD000493. [3] Wu WB, Xu YY, Cheng WW, et al. Agonist of farnesoid X receptor protects against bile acid induced damage and oxidative stress in mouse placenta--a study on maternal cholestasis model. Placenta, 2015, 36(5): 545-551. [4] Lofthouse E M, Torrens C, Manousopoulou A, et al. Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta. FASEB J, 2019, 33(7): 8211-8220. [5] Sanhal CY, Daglar K, Kara O, et al. An alternative method for measuring oxidative stress in intrahepatic cholestasis of pregnancy: thiol/disulphide homeostasis. J Matern Fetal Neonatal Med, 2018, 31(11): 1477-1482. [6] Hussain T, Murtaza G, Metwally E, et al. The role of oxidative stress and antioxidant balance in pregnancy. Mediators Inflamm, 2021, 2021: 9962860. [7] Phoswa WN, Khaliq OP. The role of oxidative stress in hypertensive disorders of pregnancy (preeclampsia, gestational hypertension) and metabolic disorder of pregnancy (gestational diabetes mellitus). Oxid Med Cell Longev, 2021, 2021: 5581570. [8] Mcglone ER, Bloom SR. Bile acids and the metabolic syndrome. Ann Clin Biochem, 2019, 56(3): 326-337. [9] Martinefski MR, Cocucci SE, Di Carlo MB, et al. Fetal coenzyme Q10 deficiency in intrahepatic cholestasis of pregnancy. Clin Res Hepatol Gastroenterol, 2020, 44(3): 368-374. [10] Molinaro A, Marschall HU. Bile acid metabolism and FXR-mediated effects in human cholestatic liver disorders. Biochem Soc Trans, 2022, 50(1): 361-373. [11] Chen W, Gao X X, Ma L, et al. Obeticholic acid protects against gestational cholestasis-induced fetal intrauterine growth restriction in mice. Oxid Med Cell Longev, 2019, 2019: 7419249. [12] Zhu H, Wang G, Bai Y, et al. Natural bear bile powder suppresses neuroinflammation in lipopolysaccharide-treated mice via regulating TGR5/AKT/NF-kappaB signaling pathway. J Ethnopharmacol, 2022, 289: 115063. [13] Zhang Y, Huang X, Zhou J, et al. PPARgamma provides anti-inflammatory and protective effects in intrahepatic cholestasis of pregnancy through NF-kappaB pathway. Biochem Biophys Res Commun, 2018, 504(4): 834-842. [14] Ozler A, Ucmak D, Evsen MS, et al. Immune mechanisms and the role of oxidative stress in intrahepatic cholestasis of pregnancy. Cent Eur J Immunol, 2014, 39(2): 198-202. [15] Wang L, Tang J, Wang L, et al. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol, 2021, 236(12): 7966-7983. [16] Torres-Cuevas I, Parra-Llorca A, Sanchez-Illana A, et al. Oxygen and oxidative stress in the perinatal period. Redox Biol, 2017, 12: 674-681. [17] Schoots MH, Gordijn SJ, Scherjon SA, et al. Oxidative stress in placental pathology. Placenta, 2018, 69: 153-161. [18] Hung TH, Skepper JN, Burton GJ. In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. The American Journal of Pathology, 2001, 159(3): 1031-1043. [19] 陆伦根, 蔡晓波, 王建设, 等. 胆汁淤积性肝病管理指南(2021). 临床肝胆病杂志, 2022, 38(1): 62-69. [20] Kim JY, Choi Y, Leem J, et al. Heme oxygenase-1 induction by cobalt protoporphyrin ameliorates cholestatic liver disease in a xenobiotic-induced murine model. Int J Mol Sci, 2021, 22(15):8253. [21] 张洋, 张桂信, 赵金龙, 等. 氧化应激在梗阻性黄疸肾脏损伤中的作用机制及治疗研究进展. 中国中西医结合外科杂志,2019, 25(5): 830-833. [22] Li L, Tan J, Miao Y, et al. ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol, 2015, 35(5): 615-21. [23] Shan D, Dong R, Hu Y. Current understanding of autophagy in intrahepatic cholestasis of pregnancy. Placenta, 2021, 115: 53-59. [24] 刘晓媛, 姚荧, 汪涛, 等. 妊娠期肝内胆汁淤积症不良妊娠结局与细胞死亡方式相关性的研究进展. 中华妇产科杂志, 2018, 53(7): 500-503. [25] Han F, Xu L, Huang Y, et al. Magnesium sulphate can alleviate oxidative stress and reduce inflammatory cytokines in rat placenta of intrahepatic cholestasis of pregnancy model. Arch Gynecol Obstet, 2018, 298(3): 631-638. [26] 何子甜, 白洁. 氧化应激与自噬相互作用的分子机制. 中国老年学杂志, 2016, 36(6): 1505-1507. [27] Ge Y, Liu X, Huang H. Advances in the role of silence information regulator family in pathological pregnancy. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2021, 50(3): 335-344. [28] Harmon AC, Cornelius DC, Amaral LM, et al. The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond), 2016, 130(6): 409-419. [29] Chao S, Xiaojun L, Haizhen W, et al. Lithocholic acid activates mTOR signaling inducing endoplasmic reticulum stress in placenta during intrahepatic cholestasis of pregnancy. Life Sci, 2019, 218: 300-307. [30] Kong X, Kong Y, Zhang F, et al. Expression and significance of dendritic cells and Th17/Treg in serum and placental tissues of patients with intrahepatic cholestasis of pregnancy. J Matern Fetal Neonatal Med, 2018, 31(7): 901-906. [31] Chipurupalli S, Samavedam U, Robinson N. Crosstalk between ER stress, autophagy and inflammation. Front Med (Lausanne), 2021, 8: 758311. [32] Ovadia C, Sajous J, Seed PT, et al. Ursodeoxycholic acid in intrahepatic cholestasis of pregnancy: a systematic review and individual participant data meta-analysis. Lancet Gastroenterol Hepatol, 2021, 6(7): 547-558. [33] Zhang Y, Jiang R, Zheng X, et al. Ursodeoxycholic acid accelerates bile acid enterohepatic circulation. Br J Pharmacol, 2019, 176(16): 2848-2863. |