肝脏 ›› 2025, Vol. 30 ›› Issue (9): 1287-1292.
王海玉, 李波, 高敬涵, 童金龙
收稿日期:2025-04-11
出版日期:2025-09-30
发布日期:2025-11-05
通讯作者:
童金龙
基金资助:
Received:2025-04-11
Online:2025-09-30
Published:2025-11-05
摘要: 肝细胞癌治疗手段有限,5年生存率较低,随着对肿瘤微环境认识的不断深入,肿瘤相关巨噬细胞(TAM)在肿瘤微环境中的独特作用使其在抗肿瘤治疗中展现出良好前景。TAM可分为抗肿瘤M1亚型和促肿瘤M2亚型,在肿瘤发生的调节和进展中起着至关重要的作用。研究表明,减少TAM的数量或改变TAM的极化可以抑制肿瘤的生长,提示TAM可能成为肿瘤治疗的潜在靶点。本文综述了肝癌中TAM的起源、极化和功能,以及其在肝癌治疗中的研究进展,为进一步开展TAM的临床研究提供理论基础。
王海玉, 李波, 高敬涵, 童金龙. 肿瘤相关巨噬细胞在肝癌免疫治疗中的研究进展[J]. 肝脏, 2025, 30(9): 1287-1292.
| [1] Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022 [J]. J Natl Cancer Cent, 2024, 4(1): 47-53. [2] Xie P, Guo L, Yu Q, et al. ACE2 Enhances sensitivity to PD-L1 blockade by inhibiting macrophage-induced immunosuppression and angiogenesis [J]. Cancer Res, 2025, 85(2): 299-313. [3] De Visser K E, Joyce J A. The evolving tumor microenviron-ment: from cancer initiation to metastatic outgrowth [J]. Cancer Cell, 2023, 41(3): 374-403. [4] Cheng Y, Song S, Wu P, et al. Tumor associated macrophages and TAMs-based anti-tumor nanomedicines [J]. Adv Healthc Mater, 2021, 10(18): e2100590. [5] Verona F, Di Bella S, Schirano R, et al. Cancer stem cells and tumor-associated macrophages as mates in tumor progression: mechanisms of crosstalk and advanced bioinformatic tools to dissect their phenotypes and interaction [J]. Front Immunol, 2025, 16: 1529847. [6] Christofides A, Strauss L, Yeo A, et al. The complex role of tumor-infiltrating macrophages [J]. Nat Immunol, 2022, 23(8): 1148-1156. [7] Cheng K, Cai N, Zhu J, et al. Tumor-associated macrophages in liver cancer: from mechanisms to therapy [J]. Cancer Commun (Lond), 2022, 42(11): 1112-1140. [8] Zhang Y, Rao Y, Lu J, et al. The influence of biophysical niche on tumor-associated macrophages in liver cancer [J]. Hepatol Commun, 2024, 8(11):e0569. [9] Chen Z, Yang S, Zhao Z, et al. Smart tumor cell-derived DNA nano-tree assembly for on-demand macrophages reprogramming [J]. Adv Sci (Weinh), 2024, 11(10): e2307188. [10] Li M Y, Ye W, Luo K W. Immunotherapies targeting tumor-associated macrophages (TAMs) in cancer [J]. Pharmaceutics, 2024, 16(7):865. [11] Zhou B, Yang Y, Li C. SIRT1 inhibits hepatocellular carcinoma metastasis by promoting M1 macrophage polarization via NF-kappaB pathway [J]. Onco Targets Ther, 2019, 12: 2519-2529. [12] Zhou B, Li C, Yang Y, et al. RIG-I promotes cell death in hepatocellular carcinoma by inducing M1 polarization of perineal macrophages through the RIG-I/MAVS/NF-kappaB pathway [J]. Onco Targets Ther, 2020, 13: 8783-8794. [13] Wang Q, Cheng F, Ma T T, et al. Interleukin-12 inhibits the hepatocellular carcinoma growth by inducing macrophage polarization to the M1-like phenotype through downregulation of Stat-3 [J]. Mol Cell Biochem, 2016, 415(1-2): 157-168. [14] Xiang X, Wang J, Lu D, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy [J]. Signal Transduct Target Ther, 2021, 6(1): 75. [15] Singer M, Zhang Z, Dayyani F, et al. Modulation of tumor-associated macrophages to overcome immune suppression in the hepatocellular carcinoma microenvironment [J]. Cancers (Basel), 2024, 17(1): 66. [16] Bartneck M, Schrammen P L, Mockel D, et al. The CCR2(+) macrophage subset promotes pathogenic angiogenesis for tumor vascularization in fibrotic livers [J]. Cell Mol Gastroenterol Hepatol, 2019, 7(2): 371-390. [17] Zang M, Li Y, He H, et al. IL-23 production of liver inflammatory macrophages to damaged hepatocytes promotes hepatocellular carcinoma development after chronic hepatitis B virus infection [J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(12): 3759-3770. [18] Guan F, Wang R, Yi Z, et al. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets [J]. Signal Transduct Target Ther, 2025, 10(1): 93. [19] Li X, Li R, Miao X, et al. Integrated single cell analysis reveals an atlas of tumor associated macrophages in hepatocellular carcinoma [J]. Inflammation, 2024, 47(6): 2077-2093. [20] Xu M, Wang Y, Xia R, et al. Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting [J]. Cell Prolif, 2021, 54(10): e13115. [21] Weng J, Wang Z, Hu Z, et al. Repolarization of immunosuppressive macrophages by targeting SLAMF7-regulated CCL2 signaling sensitizes hepatocellular carcinoma to immunotherapy [J]. Cancer Res, 2024, 84(11): 1817-1833. [22] Zhu Y, Yang J, Xu D, et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade [J]. Gut, 2019, 68(9): 1653-1666. [23] Wang J, Zhang X, Ma X, et al. Blockage of CacyBP inhibits macrophage recruitment and improves anti-PD-1 therapy in hepatocellular carcinoma [J]. J Exp Clin Cancer Res, 2023, 42(1): 303. [24] Xiang X, Wang K, Zhang H, et al. Blocking CX3CR1+ tumor-associated macrophages enhances the efficacy of anti-PD1 therapy in hepatocellular carcinoma [J]. Cancer Immunol Res, 2024, 12(11): 1603-1620. [25] Yang Q, Cui M, Wang J, et al. Circulating mitochondrial DNA promotes M2 polarization of tumor associated macrophages and HCC resistance to sorafenib [J]. Cell Death Dis, 2025, 16(1): 153. [26] Yu X, Qian J, Ding L, et al. Galectin-1-induced tumor associated macrophages repress antitumor immunity in hepatocellular carcinoma through recruitment of tregs [J]. Adv Sci (Weinh), 2025, 12(11): e2408788. [27] Du K, Li Y, Liu J, et al. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC [J]. Mol Ther, 2021, 29(4): 1572-1584. [28] Ma J, Ma R, Zeng X, et al. Lysosome blockade induces divergent metabolic programs in macrophages and tumours for cancer immunotherapy [J]. J Exp Clin Cancer Res, 2023, 42(1): 192. [29] Yu M, Yu H, Wang H, et al. Tumor associated macrophages activated in the tumor environment of hepatocellular carcinoma: characterization and treatment (Review) [J]. Int J Oncol, 2024, 65(4): 100. [30] Xia Y, Rao L, Yao H, et al. Engineering macrophages for cancer immunotherapy and drug delivery [J]. Adv Mater, 2020, 32(40): e2002054. [31] Niu M, Yi M, Li N, et al. Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC [J]. Exp Hematol Oncol, 2021, 10(1): 18. [32] Chang C C, Dinh T K, Lee Y A, et al. Nanoparticle delivery of MnO(2) and antiangiogenic therapy to overcome hypoxia-driven tumor escape and suppress hepatocellular carcinoma [J]. ACS Appl Mater Interfaces, 2020, 12(40): 44407-44419. [33] Turco V, Pfleiderer K, Hunger J, et al. T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles [J]. Nat Commun, 2023, 14(1): 771. [34] Parayath N N, Gandham S K, Leslie F, et al. Improved anti-tumor efficacy of paclitaxel in combination with microRNA-125b-based tumor-associated macrophage repolarization in epithelial ovarian cancer [J]. Cancer Lett, 2019, 461: 1-9. [35] Becherini C, Lancia A, Detti B, et al. Modulation of tumor-associated macrophage activity with radiation therapy: a systematic review [J]. Strahlenther Onkol, 2023, 199(12): 1173-1190. [36] Khan S U, Khan M U, Azhar Ud Din M, et al. Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy [J]. Front Immunol, 2023, 14: 1166487. [37] Proietto M, Crippa M, Damiani C, et al. Tumor heterogeneity: preclinical models, emerging technologies, and future applications [J]. Front Oncol, 2023, 13: 1164535. [38] Andrade De Oliveira K, Sengupta S, Yadav A K, et al. The complex nature of heterogeneity and its roles in breast cancer biology and therapeutic responsiveness [J]. Front Endocrinol (Lausanne), 2023, 14: 1083048. [39] Khizar H, Ali K, Wang J. From silent partners to potential therapeutic targets: macrophages in colorectal cancer [J]. Cancer Immunol Immunother, 2025, 74(4): 121. [40] Shang Q, Zhang P, Lei X, et al. Insights into CSF-1/CSF-1R signaling: the role of macrophage in radiotherapy [J]. Front Immunol, 2025, 16: 1530890. [41] Wu C J, Tsai Y T, Lee I J, et al. Combination of radiation and interleukin 12 eradicates large orthotopic hepatocellular carcinoma through immunomodulation of tumor microenvironment [J]. Oncoimmunology, 2018, 7(9): e1477459. [42] Dallavalasa S, Beeraka N M, Basavaraju C G, et al. The role of tumor associated macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis - current Status [J]. Curr Med Chem, 2021, 28(39): 8203-8236. [43] Cortese N, Donadon M, Rigamonti A, et al. Macrophages at the crossroads of anticancer strategies [J]. Front Biosci (Landmark Ed), 2019, 24(7): 1271-1283. [44] Haber P K, Castet F, Torres-Martin M, et al. Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma [J]. Gastroenterology, 2023, 164(1): 72-88 e18. [45] Xie C, Zhou X, Liang C, et al. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer [J]. J Exp Clin Cancer Res, 2021, 40(1): 266. [46] Liu Y, Xue R, Duan X, et al. PARP inhibition synergizes with CD47 blockade to promote phagocytosis by tumor-associated macrophages in homologous recombination-proficient tumors [J]. Life Sci, 2023, 326: 121790. |
| [1] | 施烨娟, 陈香梅. HBV整合的分子模式及其对肝细胞癌发生和预后的影响[J]. 肝脏, 2025, 30(9): 1171-1174. |
| [2] | 曾馨, 段维佳, 贾继东. IgG4相关硬化性胆管炎药物治疗新进展[J]. 肝脏, 2025, 30(9): 1174-1177. |
| [3] | 范芯铷, 王庆, 周华邦, 汪慧. 免疫治疗时代晚期肝癌患者从客观缓解到长期生存的机遇与挑战[J]. 肝脏, 2025, 30(9): 1177-1179. |
| [4] | 王新帅, 李善宝, 徐军明. 肝移植在非标准肝脏恶性肿瘤中的应用突破与挑战[J]. 肝脏, 2025, 30(9): 1180-1182. |
| [5] | 刘雄涛, 王怡恺, 薛鹏军, 康沛, 张欣, 石娟娟. 没药甾酮对二乙基亚硝胺诱导大鼠肝癌的抑制作用及其机制[J]. 肝脏, 2025, 30(9): 1225-1229. |
| [6] | 尹雯, 沈荣. 动态三维超声造影对HBV相关肝细胞癌患者微波消融后临床疗效及复发的评估[J]. 肝脏, 2025, 30(9): 1249-1253. |
| [7] | 杨啸天, 张颖, 郑昕. 乙型肝炎病毒相关肝细胞癌复发的空间——免疫研究进展[J]. 肝脏, 2025, 30(8): 1023-1025. |
| [8] | 周靖媛, 周嘉, 柳涛, 高沿航. 酒精性肝病相关肝细胞癌与其他病因所致肝细胞癌的差异[J]. 肝脏, 2025, 30(8): 1028-1032. |
| [9] | 朱冉, 陈淑娆, 邹梦琦, 杨宇峰. 早发性肝细胞癌与非早发性肝细胞癌的临床病理特征比较[J]. 肝脏, 2025, 30(8): 1093-1096. |
| [10] | 刘丁境, 牛日雨, 尹伟, 李成忠. 血小板相关参数评估乙型肝炎病毒相关肝细胞癌发生风险和预后的研究进展[J]. 肝脏, 2025, 30(8): 1165-1168. |
| [11] | 李玉龙, 张欣欣. HBsAg亚病毒颗粒:miRNA递送载体及潜在治疗应用[J]. 肝脏, 2025, 30(7): 897-900. |
| [12] | 李卉, 周义文, 王务军, 陈江波. 微波消融联合信迪利单抗对中晚期肝细胞癌患者疾病控制效果、免疫功能及预后的影响[J]. 肝脏, 2025, 30(7): 934-937. |
| [13] | 李晓艳, 张景芳, 王春萍, 周平安. 超声造影联合CT定量参数鉴别诊断肝脏局灶性结节增生与肝细胞癌的价值研究[J]. 肝脏, 2025, 30(7): 938-942. |
| [14] | 杨斌, 王勇刚, 曹洪刚, 高建勇. HBV相关肝细胞癌患者血清UCA1、WRAP53表达水平及其临床意义[J]. 肝脏, 2025, 30(7): 943-947. |
| [15] | 李龙, 郑振东, 杜成, 刘渤娜. HCC患者接受营养干预后BMI、PNI、NPAR水平变化及其对生存质量的影响[J]. 肝脏, 2025, 30(7): 948-952. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||